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1 Introduction
Infrared radiation exists everywhere in the world. All objects in nature with a temperature
above absolute zero emit infrared radiation, and the higher the surface temperature, the
stronger the infrared radiation. Infrared radiation is a type of electromagnetic wave with
a wavelength range between 0.75 µm and 1000 µm. Based on its wavelength range, the
infrared spectrum can be divided into three bands: near-infrared 0.7 µm to 2.5 µm, mid-
infrared 2.5 µm to 25 µm, and far-infrared 25 µm to 100 µm. The imaging performance of
infrared images is primarily influenced by the scene temperature, the wavelength range of
the infrared imaging equipment, and the atmospheric transmission medium. This section
focuses on analyzing the effects of temperature and wavelength on infrared imaging.

Planck’s law is one of the fundamental laws describing infrared thermal radiation. It
quantitatively analyzes the relationship between the spectral radiance of a blackbody and
temperature and wavelength. The formula is as follows:

Mbλ =
c1
λ5
⋅ 1

e
c2
kT − 1

(3-1)

where Mbλ represents the spectral radiance, c1 is the first radiation constant, c2 is the second
radiation constant, λ is the wavelength, T is the temperature, and k is the Boltzmann
constant. The constants are c1 = 3.7413 × 10−16 Wm2, c2 = 1.43879 × 10−2 mK, and k =
1.380662 × 10−23 J/K.

Figure 1 shows the relationship between the spectral radiance of a blackbody and temper-
ature and wavelength. From the figure, we observe that the spectral radiance of a blackbody
under different temperatures increases sharply with wavelength, reaches a peak, and then
gradually decreases. As the temperature increases, the wavelength corresponding to the
peak decreases. According to Wien’s displacement law, the wavelength of the peak spectral
radiance is inversely proportional to the blackbody temperature. By integrating over all
wavelengths from 0 to infinity, we obtain the relationship between the total radiance of a
blackbody and temperature, known as the Stefan-Boltzmann law:

M0(T ) = σT 4 (3-2)

where σ = 5.6694 × 10−8 W/(m2K4). The Stefan-Boltzmann law indicates that the total
radiance of a blackbody is proportional to the fourth power of its temperature.

The above analysis is based on the blackbody, which is an ideal theoretical model. To
apply the physical analysis to real-world scenarios, it is necessary to quantify the relationship
between blackbody radiation and actual objects. Emissivity is a physical quantity that
quantifies the ratio of the radiative power of a real object to that of a blackbody. A lower
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Fig. 1: Relationship between blackbody spectral radiance, temperature, and wavelength

emissivity value indicates a greater difference between the radiation of the object and the
blackbody. Thus, knowing the emissivity of any target object allows us to use blackbody
radiation theory to analyze its radiation. Different objects have different emissivities due
to their physical properties. Generally, the emissivity of metals is directly proportional to
temperature, while the emissivity of non-metals is inversely proportional to temperature.
Additionally, the emissivity of objects decreases with increasing infrared wavelength.

The heterogeneous infrared image generation algorithm based on multi-receptive field
feature fusion Pix2pix can achieve the conversion from visible light images to infrared images
of a specific time period. To efficiently generate infrared images for a large number of different
time periods, this paper investigates the time-period expansion of infrared images based on
Generative Adversarial Networks (GANs). Since it is difficult to obtain paired infrared
images for different time periods in the time-period expansion task, this research is based on
a network capable of performing unpaired image-to-image translation—StarGAN.
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2 Related Work

2.1 Infrared Image Generation Methods Based on Simulation Mod-
els

Infrared image generation methods based on simulation models are widely adopted for in-
frared image simulation. Research on infrared simulation technology abroad began in the
1930s and 1940s. In the early stages, the focus was on modeling the surface temperature
distribution of objects, thereby establishing thermal models for these objects.

In 1980, Jacobs developed a surface temperature modeling approach based on a simple
one-dimensional thermal model [1]. In 1985, Ben-Yosef et al. conducted radiation statistics
for the 8-12 µm infrared band to establish an empirical model [2]. By 1987, Biesel et al.
implemented a simulation method capable of real-time generation of highly accurate infrared
images [3], creating an infrared scene database. In 1994, Gambotto et al. proposed an
infrared simulation algorithm combining segmentation algorithms and regional analysis to
simulate ground surface temperatures and calculate corresponding infrared thermal images,
enabling all-time infrared temperature model calculations [4].

Research into infrared image simulation expanded significantly in the 1990s. In 1992,
Cathcart integrated scene geometric models, infrared radiation models, and computer graph-
ics techniques to render high-resolution synthetic images [5]. In 1996, Hyun-Ki et al. in-
troduced an infrared radiation model that combined target internal thermal models with
background environmental temperature distributions [6]. By the late 20th century, Poglio
et al. developed a simulation framework based on 3D target models, capable of generating
high spatial resolution infrared images for the 3–14 µm band [7].

With the increasing computational power of computers, the 21st century has seen the
emergence of many mature infrared simulation platforms, greatly simplifying the simulation
process and shortening simulation cycles. In 2003, Lockheed Martin UK developed the
CAMEO-SIM simulation software [8], capable of synthesizing infrared images in various
environments using geometric models, infrared radiation models, and atmospheric models.
Currently, the Vega software package by MultiGen Paradigm is one of the most widely
used infrared simulation tools. This software integrates numerous precise material data
samples, radiation models, and atmospheric models, enabling infrared simulation across
diverse environments and time periods.

In 2007, the French company OKTAL-SE developed SE-WORKBENCH [9, 10], a sim-
ulation platform capable of modeling environments for multiple sensor devices, including
electro-optical and lidar systems. Its specialized infrared module achieves high-fidelity in-
frared image simulation. In the following years, researchers began leveraging the powerful
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parallel capabilities of GPUs in infrared simulation systems. In 2011, Mielikainen et al. de-
veloped a high-speed, high-performance infrared atmospheric sounding interferometer (IASI)
based on GPUs [11], which could operate on GPU-equipped computers.

Compared to infrared image simulation technology abroad, China’s research in this field
started relatively late, and the overall level lags behind that of other countries. However,
with increasing national investment in the domain of infrared simulation, significant progress
has been made in recent years.

Initially, Chinese researchers focused on simulating the infrared radiation distribution of
natural scenes. In 1997, Zhang Jianqi et al. established a model of surface infrared radiation
characteristics based on surface radiation properties and the thermal balance equation [12].
In 2000, Wang Zhangye et al. calculated the infrared radiation intensities of buildings’
rooftops, walls, glass, asphalt roads, and other objects during different periods based on
meteorology and heat transfer theory [13]. In 2002, Xuan Yimin et al. developed an infrared
thermal imaging simulation method based on visible images, using a Markov random field
segmentation model to calculate thermal radiation characteristics of materials and gener-
ate simulated infrared thermal images [14]. In 2010, Chen Shan et al. proposed a method
for simulating infrared textures of background scenes. They used visible light images and
generated infrared images for different times based on scene temperature models, infrared
radiation models, and gray mapping models [15]. In 2015, Zhou Qiang et al. established a
grayscale mapping relationship from visible light images to near-infrared images based on ra-
diation calibration and scene emissivity [16]. Although this method achieved fast simulation
speeds, the realism of the infrared texture was low. In 2017, Yang Yibin et al. proposed an
infrared image simulation method based on infrared grayscale interpolation and modulation.
This approach calculated grayscale distributions for other time periods using heat transfer
theory [17], which is suitable for simulating simple infrared scenes.

Since the 21st century, China has gradually shifted to researching complete infrared
simulation systems. In 2000, Wu Yaping and Zhang Tianxu analyzed the interaction among
3D scene models, atmospheric transmission models, and material physical thermal properties
during infrared image simulation. Using Vega software, they completed multi-band infrared
image simulations [18]. In 2007, Da Bangyou and Sang Nong used Vega software to simulate
images of different materials under various time periods, weather conditions, and seasons.
By solving the relationship between simulation results and infrared radiation values, they
obtained radiation data as the mean values for corresponding materials [19]. In 2016, Zhong
Ming carried out secondary development based on SE-Workbench software, automating the
material mapping process and reducing excessive manual intervention [20].

The aforementioned infrared image generation methods based on simulation models rely
on physical models of infrared imaging. They are highly interpretable and provide some

5



Master’s Thesis of Huazhong University of Science and Technology

degree of physical credibility. However, they involve complex intermediate physical param-
eters, require significant manual intervention, and feature limited coupling between target
and background infrared radiation calculations. As a result, these methods cannot achieve
rapid and large-scale infrared image generation.

2.2 Infrared Image Generation Methods Based on Deep Learning

The generation of heterogeneous infrared images and infrared image time-extension can
be considered as a mapping process between different image domains. This paper models
the image generation task as an image translation problem. Deep learning has been a
research hotspot in recent years, and foreign researchers have applied deep networks to
perform some image translation tasks in the visible light image domain. In 2016, Gatys et
al. utilized convolutional neural networks (CNNs) to achieve artistic style transfer of visible
light images [21], but their method suffered from low efficiency and conversion distortion.
In the same year, Li Feifei et al. proposed a real-time image style transfer model based on
a perceptual loss function, leveraging intermediate feature layers of the VGG-16 network to
calculate perceptual losses [22].

Generative adversarial networks (GANs) have been a popular topic in deep learning,
achieving impressive results in image-to-image translation tasks. Until recently, generated
images were of low quality and resolution. However, this changed with the introduction of
Pix2pix, a revolutionary development in the field of image translation. In 2016, Isola et
al. proposed the Pix2pix framework [23], which used adversarial loss between a generator
and a discriminator combined with L1 loss to handle paired visible light image translation
tasks. Subsequently, to address high-resolution image translation tasks, Wang et al. pro-
posed the Pix2pixHD network [24], which employed multi-level generators and multi-scale
discriminators, achieving better results.

For unpaired image-to-image translation tasks, Zhu et al. proposed the CycleGAN net-
work in 2017 [25], which adopted dual generator networks and a cycle-consistency loss to
enable conversion between unpaired image domains. In the same year, Kim et al. introduced
DiscoGAN [26], and Yi et al. proposed DualGAN [27], both employing network architectures
similar to CycleGAN and achieving promising results in tasks like image colorization and
facial content editing. In 2018, Liu et al. proposed the UNIT network [28], combining a
variational autoencoder with a generator. Each image domain had its encoder and generator
networks, and the encoders’ outputs were assumed to follow a shared distribution, enabling
cross-domain image distribution learning. In 2019, Huang et al. introduced MUNIT [29],
which employed feature disentanglement to encode images into content codes independent of
image domains and style codes specific to image domains. This framework generated images
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in different domains by combining content codes with style codes from different domains.
However, these frameworks could only learn mappings between two image domains at a time,
limiting scalability when dealing with multiple domains. To address this, Choi et al. pro-
posed the StarGAN network in 2018 [30], encoding domain information into the generator
input, enabling transformations between multiple image domains using a single generator.
This algorithm achieved notable success in facial attribute editing tasks.

The aforementioned deep network architectures were primarily applied to visible light
images, with datasets often consisting of well-aligned facial images and relatively simple
distributions. However, the infrared datasets used in this study exhibit significant variations
in scene content, differing greatly from the distribution of visible light image datasets, leading
to notable performance gaps in practical applications.

In recent years, some infrared image generation methods based on GANs have emerged.
In 2019, Xie Jiangrong et al. [31] proposed using the DCGAN network for the random
generation of simple infrared target images. In the same year, Feng Yunfei investigated the
task of infrared band extension and applied the CycleGAN network to convert mid-wave
infrared images to long-wave infrared images [32].

3 Method

3.1 Time Period Expansion of Infrared Images Based on StarGAN

3.1.1 StarGAN Network

Infrared imaging is mainly related to temperature, wavelength, and the transmission medium.
The transformation relationship between infrared images at different time periods is not only
dependent on temperature but also on wavelength and atmospheric transmission factors.
Equations (1) and (2) represent the imaging factors of two infrared images at different time
periods:

IT1 = f(T1, λ1, ϵ1, θ1) (1)

IT2 = f(T2, λ2, ϵ2, θ2) (2)

Where IT1 represents the infrared image at time period 1, IT2 represents the infrared
image at time period 2, λ1, T1, and ϵ1 are the influencing factors for time period 1, while λ2,
T2, and ϵ2 are the influencing factors for time period 2. λ represents wavelength, T represents
temperature, ϵ represents atmospheric transmission effects, and θ represents other influencing
factors.
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In this paper, infrared images from three different time periods are selected to represent
their respective infrared radiation characteristics: infrared images at 5 AM, 2 PM, and 7 PM.
The infrared image dataset is captured using the same imaging equipment, so the wavelength
and atmospheric environment remain relatively constant. Based on the above analysis, if we
can obtain a mapping function that satisfies Equation (3), we can use it to expand infrared
images across different time periods. Therefore, the feasibility of time period expansion
depends on whether we can fit the mapping function between time period 1 and time period
2 images.

IT1 = F (IT2) (3)

This paper models the time-period expansion of infrared images as an image translation
problem between different time-period infrared image domains. To solve the problem of
requiring paired datasets, many scholars have proposed image translation models for un-
paired datasets: CycleGAN [25], DiscoGAN [26], and DualGAN [27] adopt a dual generator
structure, while using a cycle-consistency loss function to preserve key features of the source
image domain and reduce unreasonable mapping relationships. UNIT [28] and MUNIT [29],
based on image information decoding ideas, combine VAE and GAN networks to decode
image information into content features and domain-specific style features, enabling one-to-
one and many-to-many image generation. However, in the aforementioned models, a single
generator can only learn the mapping relationship between two image domains at a time.
When performing image translation across multiple image domains, these models face limited
robustness and scalability. As shown in Figure 2(a), to learn all transformation mappings
between k image domains, the models must train k(k − 1) generators, and each time, only
two image domains are used for training, which prevents the learning of global features for
the entire dataset.

To improve the algorithm’s efficiency, the proposed method enables mutual translation
between multiple image domains using a single model. As shown in Figure 2(b), this frame-
work adds target domain image period information at the input side, and a single generator
network learns the mapping relationship between infrared images at different time periods.
This unified model architecture allows for the transformation relationships between mul-
tiple image domains to be obtained while training a single network, enabling the flexible
conversion of input images into any required target domain image.

StarGAN, proposed by Choi et al. [30], is a network designed for facial attribute edit-
ing. The network allows for multi-attribute facial image editing using a single generator by
adding target facial attribute information to the input. Unlike other models that learn fixed
transformation relationships between two image domains, StarGAN combines image and do-
main information as input to the generator, allowing flexible conversion of the image to the
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Fig. 2: Comparison of Model Architectures

corresponding domain. For domain information encoding, StarGAN uses one-hot encoding
to represent domain information. Based on the previous analysis, StarGAN is well-suited
for the task of infrared time period extension. Therefore, in this study, StarGAN is used
as the basic framework for the algorithm. The model architecture based on the StarGAN
network is shown in Figure 3, where the network consists of a generator network G and a
discriminator network D. The input to the generator network is the concatenation of the
time period encoding information (green box) and the input infrared image. Meanwhile, the
discriminator network adds a time period classification branch.

Fig. 3: StarGAN Network Model Structure

During the training process, StarGAN randomly generates target domain time period
labels and trains the model to flexibly convert the input infrared image into the target time
period domain. Thus, in the testing phase, the image can be converted to any desired target
time period infrared image by controlling the target time period label. The training process
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of the StarGAN-based infrared time period extension algorithm is illustrated in Figure 4,
where the top of the image shows the time period information and its corresponding encoding
method:

Fig. 4: StarGAN Training Process for Infrared Time Period Extension

• Training the Discriminator Network (D): Real infrared images and those gen-
erated by the generator are input into the discriminator network. The discriminator
learns to distinguish real infrared images from fake ones and classifies real infrared
images into the corresponding time period domain (100).

• Training the Generator Network (G): Mapping from the source domain to the
target domain. The target domain time period encoding label labelr (010) is randomly
generated. This label is spatially replicated and concatenated with the input image,
and fed into the generator network to generate the corresponding time period infrared
image.

• Training the Generator Network (G): Mapping from the target domain to the
source domain. The generator network attempts to reconstruct the original image by
taking the original infrared image with its time period encoding label. The generated
image and the original image’s time period encoding information labels are concate-
nated and input into the generator to produce the reconstructed original infrared image
xrec.

• Training the Generator Network (G): "Deceiving" the discriminator by gener-
ating target domain infrared images that are indistinguishable from real infrared im-
ages. The infrared image x

′ generated by the generator is input into the discriminator
network. The discriminator classifies the image as real or fake and outputs the corre-
sponding time period encoding information. At this point, the generator aims for the
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discriminator to classify the image as "real" and correctly output the target domain
time period encoding labelr (010).

3.1.2 StarGAN Model Architecture

Generator Structure. The generator network structure used in this study is shown in
Figure 5. The yellow dashed line represents the encoder, the purple dashed line represents
the decoder, and the black dashed line represents the transmission layer. The encoding
part consists of three down-sampling convolution blocks that reduce the resolution of feature
maps. The transmission layer consists of six residual blocks, while the decoding part recovers
the original resolution through three up-sampling convolution blocks. To generate infrared
images for multiple time periods, the time period encoding is added to the network’s input.
The original time period encoding uses a one-hot encoding scheme. The original time period
encoding is extended in the 3rd and 4th dimensions and concatenated with the input image
along the 2nd dimension before being fed into the generator. By transforming the original
time period encoding, the network’s output can be controlled. Figure 5 shows the generator
network structure, which demonstrates how an infrared image at 5 AM is transformed into
infrared images for 2 PM and 7 PM using two different time period encoding information.

Fig. 5: StarGAN Generator Network Architecture
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The structures of down-sampling convolution block (Conv_Block), residual convolution
block (Res_Conc_Block), and up-sampling convolution (Deconv_Block) are illustrated in
Figure 6, Figure 7, and Figure 8, respectively. Regarding the normalization layer choice,
the generator network uses the Instance Normalization (IN) layer, which has shown good
experimental results in image style transfer tasks. Batch Normalization (BN) is widely used
in convolutional neural networks (CNNs), as it normalizes the data for each batch during
training, ensuring consistent data distribution and better adaptation to the overall data
distribution. However, in image translation tasks with unpaired datasets, the generated
image results primarily rely on the corresponding image instance, and the data distribution
in the same batch is less correlated. Therefore, the IN layer is used to normalize each image
instance separately. Additionally, residual convolutional neural network (CNN) structures
are used in the transmission layer, where the input and output of convolution blocks are
added together. This structure helps accelerate the network’s learning speed and mitigates
the vanishing gradient problem during backpropagation.

Fig. 6: StarGAN Encoder Submodule Network Architecture

Fig. 7: StarGAN Transmission Layer Submodule Network Architecture

The parameters of the G-network are shown in Table 1. The convolution layer parameters
(f, k, s, p) represent the number of filters, filter size, stride, and padding size, respectively.
The input and output feature parameters (b, c, h,w) represent batch size, number of channels,
feature map height, and feature map width, respectively. From the table, it can be seen that
the encoder performs down-sampling by setting the stride of the convolution layers to 2.
The transmission layer consists of two convolution layers per submodule, ensuring that the
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Fig. 8: StarGAN Decoder Submodule Network Architecture

feature resolution remains the same. The image resolution is progressively restored through
the decoder’s deconvolution layers, ensuring that the output resolution matches the input
resolution.

Discriminator Structure. For a given input image and a target time period label, the
goal of time period extension is to transform the input image into an output image with the
features of the target time period domain. To ensure that the generated image meets the
domain conditions of the corresponding time period, the discriminator network (D) adds
an auxiliary classifier that performs time period classification on the input image. During
the training of both the generator and discriminator networks, a time period classification
loss function is incorporated. The specific implementation details can be found in the next
section. Additionally, the D network retains an output path for distinguishing between real
and fake images. The architecture of the D network used in this study is shown in Figure 9,
and the ConvBlock submodule is illustrated in Figure 10.

Fig. 9: StarGAN Discriminator Network Architecture
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Module Convolution
Block Name

Convolution
Layer Param-
eters (f,k,s,p)

Input Fea-
tures (b,c,h,w)

Output Fea-
tures (b,c,h,w)

Input - - (1,3,256,256) (1,6,256,256)
Encoder CB0 (64,7,3,1) (1,6,256,256) (1,64,256,256)

CB1 (128,4,1,2) (1,64,256,256) (1,128,128,128)
CB2 (256,4,1,2) (1,128,128,128) (1,256,64,64)

Transmission RCB0 (256,3,1,1) (1,256,64,64) (1,256,64,64)
Layer (256,3,1,1) (1,256,64,64) (1,256,64,64)

RCB1 (256,3,1,1) (1,256,64,64) (1,256,64,64)
(256,3,1,1) (1,256,64,64) (1,256,64,64)

RCB2 (256,3,1,1) (1,256,64,64) (1,256,64,64)
(256,3,1,1) (1,256,64,64) (1,256,64,64)

RCB3 (256,3,1,1) (1,256,64,64) (1,256,64,64)
(256,3,1,1) (1,256,64,64) (1,256,64,64)

RCB4 (256,3,1,1) (1,256,64,64) (1,256,64,64)
(256,3,1,1) (1,256,64,64) (1,256,64,64)

RCB5 (256,3,1,1) (1,256,64,64) (1,256,64,64)
(256,3,1,1) (1,256,64,64) (1,256,64,64)

Decoder DB0 (128,4,1,2) (1,256,64,64) (1,128,128,128)
DB1 (64,4,1,2) (1,128,128,128) (1,64,256,256)
DB2 (3,7,1,1) (1,64,256,256) (1,3,256,256)

Table 1: StarGAN Generator Network Parameters

The parameters of the D-network are shown in Table 2. The convolution layer parameters
(f, k, s, p) represent the number of filters, filter size, stride, and padding size, respectively.
The input and output feature parameters (b, c, h,w) represent batch size, number of chan-
nels, feature map height, and feature map width, respectively. The output module includes
two branches: the time period information classification branch and the real/fake sample
judgment branch.

3.1.3 StarGAN Loss Functions

Generative adversarial networks (GANs) are powerful models for data generation but suffer
from training instability, vanishing gradients, and exploding gradients. This instability arises
because the generator’s optimization goal under the optimal discriminator minimizes the JS
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Fig. 10: ConvBlock Submodule Network Architecture

Module Convolution
Block Name

Convolution
Parameters
(f, k, s, p)

Input Features
(b, c, h,w)

Output Features
(b, c, h,w)

Input - - (1,3,256,256) -
Downsampling Conv2d_0 (64,4,1,2) (1,3,256,256) (1,64,128,128)

ConvBlock_1 (128,4,1,2) (1,64,128,128) (1,128,64,64)
ConvBlock_2 (256,4,1,2) (1,128,64,64) (1,256,32,32)
ConvBlock_3 (512,4,1,2) (1,256,32,32) (1,512,16,16)
ConvBlock_4 (1024,4,1,2) (1,512,16,16) (1,1024,8,8)
ConvBlock_5 (2048,4,1,2) (1,1024,8,8) (1,2048,4,4)

Output Module Contranspose2d_0(1,3,1,1) (1,2048,4,4) (1,1,4,4)
Contranspose2d_1(3,4,0,1) (1,2048,4,4) (1,3,1,1)

Table 2: Network structure of the StarGAN discriminator.

divergence between the real and generated distributions. JS divergence effectively measures
the similarity between two distributions but fails when their support regions are disjoint—a
common scenario in high-dimensional data mappings.

To address these issues, the Wasserstein distance was introduced, which remains effective
even when the two distributions do not overlap. The Wasserstein loss in WGAN is defined
as follows:

W (P1, P2) = sup
∥f∥L≤K

Ex∼P1[f(x)] −Ex∼P2[f(x)] (4)

where P1 and P2 are the real and generated data distributions, and f is a Lipschitz-
continuous function.

In WGAN, weight clipping is used to enforce the Lipschitz constraint, restricting discrim-
inator parameters wi ∈ [−0.01,0.01]. However, weight clipping can lead to slow convergence
and parameter saturation, which reduces the discriminator’s capacity. Gradient clipping
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thresholds that are too high or low can further cause gradient explosion or vanishing, com-
plicating parameter tuning.

The WGAN-GP model replaces weight clipping with a gradient penalty. An additional
loss term penalizes deviations from the Lipschitz condition:

W (P1, P2) = Ex∼P1[f(x)] −Ex∼P2[f(x)] − λEx̂∼Px̂
[(∥∇x̂D(x̂)∥2 − 1)2] (5)

where x̂ = ϵx1 + (1 − ϵ)x2, x1 ∈ P1, x2 ∈ P2, and ϵ ∼ Uniform[0,1].
WGAN-GP avoids training difficulties and stabilizes the training process. Therefore,

this work adopts WGAN-GP as the adversarial loss for unpaired image generation. The
adversarial loss for the generator (G) and discriminator (D) is defined as:

Ladv = Ex[Dsrc(x)] −E(x,c)[Dsrc(G(x, c))] − λgpEx̂[(∥∇x̂Dsrc(x̂)∥2 − 1)2] (6)

Temporal Classification Loss For a given input infrared image x and target domain
label c, temporal expansion transforms x into an output image with the desired temporal
features. To achieve this, D includes an auxiliary classifier, adding temporal classification
losses for both real (Lr

cls) and generated (Lf
cls) images:

Lr
cls = E(x,c′) [−c′ log(Dcls(x))] (7)

Lf
cls = E(x,c) [−c log(Dcls(G(x, c)))] (8)

where c′ is the original label and Dcls represents the discriminator’s classification branch.
Reconstruction Loss To ensure generated images preserve the input scene content, a

cycle consistency loss is applied:

Lrec = E(x,c,c′)[∥x −G(G(x, c), c′)∥1] (9)

Optimization Objectives The overall loss functions for G and D are:

LG = Ladv + λclsL
f
cls + λrecLrec (10)

LD = Ladv + λclsL
r
cls (11)

where λcls and λrec control the relative importance of classification and reconstruction
losses.

Figure 11 illustrates the overall structure and relationships of these loss functions.
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Fig. 11: StarGAN Loss Function Diagram.

3.1.4 Model Training and Experimental Results Analysis

Dataset Description The dataset used in the experiments is the road scene dataset released
by the Kaist Laboratory. Infrared images in the dataset were captured by a FLIR infrared
camera with a wavelength range of 7.5 µm to 13 µm . This study focuses on infrared images
captured at three specific time periods: 5 a.m., 2 p.m., and 7 p.m. For each time period,
the training dataset consists of 2000 images, and the testing dataset consists of 200 images.
It is worth noting that the infrared images are not paired across time periods; however, the
scenes in the dataset are similar, mainly including roads, trees, grass, vehicles, and a small
number of pedestrians.

Training Details and Parameter Settings To preprocess the dataset, all images
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were cropped and resized to a size of (256, 256). Each infrared image was labeled with its
corresponding time period, and the label was combined with the infrared image to form a
data sample {0 ∶ infrared image,1 ∶ label}. The same processing was applied to all time
periods, resulting in a total of 6000 training data samples.

The training parameters were configured as follows: a batch size of 8 was used, with a
total of 20,000 iterations. The learning rate was initially fixed at 0.0001 for the first 10,000
iterations, after which it was decreased by 0.00001 every 1,000 iterations until reaching 0.
The Adam optimizer was employed for optimization, with β1 = 0.5 and β2 = 0.999.

Time period information was encoded using one-hot encoding. The one-hot encoding
was expanded to a shape of (256, 256) and concatenated with the infrared image along the
second dimension as input to the generator network.

Training Process and Results Analysis The network was trained on the infrared
time period dataset using the designed loss functions. After 100 epochs, the trends of the
generator and discriminator losses are shown in Figures 12 and 13.

Fig. 12: StarGAN Generator Loss Curve
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Fig. 13: StarGAN Discriminator Loss Curve

The results show that the cycle consistency loss steadily decreases and gradually converges
after 17500 steps. The discriminator’s oscillations diminish over time, and the discrimination
loss for real and fake samples becomes comparable, indicating no mode collapse.

Experimental Results Using the trained generator network, the temporal extension of
the test set data was performed. In this section, the subjective evaluation method is first
adopted to measure the realism of the extended images and the effectiveness of the temporal
information. Figures 14 shows the experimental results of infrared images at 5 a.m. being
extended to 2 p.m. and 7 p.m. The first column contains the input infrared images at 5
a.m., while the second, third, and fourth columns show the infrared images at 5 a.m., 2 p.m.,
and 7 p.m., respectively, after temporal extension.

In Figures 14, the three scenes in the first column consist of real infrared images captured
from roads, buildings, and trees. It can be observed that the extension results for 5 a.m.
and 7 p.m. are better, as no abrupt changes in brightness occur within the semantic range
of each scene. However, the extension results for 2 p.m. show varying degrees of distortion.
Examining the road semantic scene, the results in the first row are satisfactory, but the
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second and third rows fail to extend the road information in the distant regions, retaining
the grayscale characteristics of the original infrared image at 5 a.m., which appear darker.
The analysis indicates that the grayscale average of infrared images at 5 a.m. is relatively
low, with low contrast. Infrared images at 7 p.m. generally exhibit higher brightness, with
imaging effects relatively closer to 5 a.m., resulting in better extension results. In contrast,
the 2 p.m. infrared images not only have higher brightness but also exhibit significant
changes in grayscale information for different semantic scenes, with greater contrast, leading
to poorer generation results.

Fig. 14: Temporal extension results for infrared images captured at 5 a.m.

Figures 15 presents the temporal extension results for infrared images captured at 2 p.m.
Compared to 5 a.m., the imaging effect is significantly improved. The analysis suggests that
the enhanced performance is primarily due to the higher contrast of 2 p.m. images, which
provides clearer contours between different materials.
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Fig. 15: Temporal extension results for infrared images captured at 2 p.m.

Figures 16 illustrates the temporal extension results for infrared images captured at 7
p.m. Similar issues with poor image quality arise due to weaker contrast. Additionally, it
can be observed that extending from 7 p.m. to 5 a.m. results in errors in the tree semantic
scene. Trees, having a smaller heat capacity and less variation in infrared radiation, generally
exhibit darker grayscale values relative to roads. However, in the first and second rows of
the figure, the grayscale of trees in the extended 5 a.m. infrared images becomes noticeably
brighter.

From the above analysis, it can be concluded that the StarGAN network initially achieves
the task of temporal extension, producing satisfactory results under certain scenarios. How-
ever, issues such as poor image quality and errors in temporal extension of infrared textures
are also observed. These issues are partly attributed to the inherent characteristics of in-
frared imaging, such as low grayscale and contrast. Additionally, the dataset used in this
study includes significant variations in scene information, leading to notable semantic scene
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Fig. 16: Temporal extension results for infrared images captured at 7 p.m.

generation errors in some results. To preserve the original scene information while ensur-
ing strong generalization capabilities of the network, this paper proposes a semantically
constrained StarGAN network.

3.2 Infrared Image Temporal Extension Based on Semantically Con-
strained StarGAN

3.2.1 Semantically Constrained StarGAN Network

In the task of infrared image temporal extension, the algorithm must satisfy two essential
requirements: (1) preserving the semantic information of the original scene in the generated
infrared image and (2) ensuring that the generated infrared image accurately reflects the
temporal texture distribution characteristics of the corresponding time period. To address
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these requirements, this paper introduces a semantically constrained StarGAN with key
enhancements to guarantee semantic invariance and temporal information accuracy.

1. Semantic Invariance: Expanding on the original StarGAN architecture, we incor-
porate a semantic information encoding branch within the generator. Furthermore,
a semantic encoding consistency loss function is integrated into the training process.
These additions ensure that the generated infrared image retains the semantic features
of the original scene, maintaining alignment of semantic information across different
time periods.

2. Temporal Information Accuracy: Temporal variations in infrared radiation differ
across objects due to their physical properties. For instance, objects with high specific
heat capacity exhibit greater day-night temperature fluctuations and more pronounced
radiation changes, while those with low specific heat capacity demonstrate smoother
temperature transitions and subtler radiation variations. To capture these distinctions,
we propose a temporal information encoding method that leverages semantic segmen-
tation maps and temporal infrared radiation curves. This enables the generator to
model time-specific radiation characteristics with high precision.

The architecture of the semantically constrained StarGAN for infrared image temporal
extension is illustrated in Figure 17. The generator’s encoder comprises three branches: a
temporal information encoding branch, a semantic encoding branch, and an image feature
encoding branch. Outputs from these branches are concatenated and fed into the decoder,
which generates infrared images aligned with the temporal encoding data. The discriminator
network retains the original structure of the StarGAN architecture.

By addressing the dual challenges of semantic invariance and temporal information accu-
racy, this enhanced StarGAN framework offers a robust solution for infrared image temporal
extension. It holds significant potential for applications such as remote sensing, surveillance,
and thermal imaging, where accurate temporal extension of infrared imagery is critical.

The encoder of the generator (G) network builds upon the StarGAN architecture, in-
tegrating additional temporal encoding and semantic encoding branches. The temporal
information encoding branch calculates the temporal code using semantic segmentation re-
sults from the semantic encoding branch and the temporal curve of infrared radiation, as
described in Section 3.2.2. The semantic encoding branch is a Unet-based semantic seg-
mentation network that performs pixel-level classification of input infrared images. During
training, supervised learning with labeled data is employed to train the semantic segmenta-
tion branch.
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Fig. 17: Semantically Constrained StarGAN Model Structure

If the semantic segmentation branch accurately captures the semantic information, the
penultimate feature layer of this network encapsulates the semantic information of the in-
put image. Consequently, this feature layer is concatenated with the encoder output as
temporal-independent features, preserving the original infrared image details while ensuring
semantic invariance during temporal extension. To enforce consistency in semantic infor-
mation, a semantic encoding consistency loss is added during training, ensuring that the
extended infrared image retains the semantic properties of the original. Further details of
this implementation are provided in Section 3.2.3.

The semantically constrained StarGAN for infrared image temporal extension follows the
algorithmic flow outlined below:

1. Train the D Network: The real infrared images and the infrared images generated
by the generator are input into the discriminator (D) network. The D network learns
to distinguish between real and generated infrared images and classifies them into their
respective temporal domains.

2. Train the G Network (Source to Target Mapping): Infrared images are input
into the semantic encoding branch and the image feature encoding branch. A random
target temporal label is generated. Using this target temporal label and the segmen-
tation results from the semantic encoding branch, the temporal encoding labelr is
computed. The outputs of the image feature encoding branch, the penultimate feature
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layer of the semantic encoding branch, and the temporal encoding labelr are concate-
nated and passed to the decoder, which generates the infrared image corresponding to
the target temporal encoding.

3. Train the G Network (Target to Source Mapping): The generator (G) network
reconstructs the original infrared image from the generated image, given the original
temporal encoding label. The generated image is input into the semantic encoding
branch and the image feature encoding branch. Using the original temporal label
and the segmentation results of the semantic encoding branch, the temporal encoding
labels is computed. The outputs of the image feature encoding branch, the penultimate
feature layer of the semantic encoding branch, and the temporal encoding labels are
concatenated and passed to the decoder to reconstruct the original infrared image x̂rec.

4. Train the D Network ("Fooling" the Discriminator): The infrared images gen-
erated by the G network are input into the D network. The discriminator evaluates
the authenticity of the images and outputs the corresponding temporal encoding in-
formation. At this stage, the generator aims to "fool" the discriminator by making
it classify the generated images as real and correctly assign them to their respective
temporal domains.

3.2.2 Semantic-Constrained StarGAN Time Period Encoding Method

In the StarGAN network, the time period encoding information among different materials
in full-frame infrared images is identical. However, infrared radiation is closely related to
material properties, and the infrared radiation distribution of different materials conforms to
their respective diurnal variation characteristics. Based on this, utilizing prior knowledge of
the diurnal variation characteristics of infrared radiation for different materials, this paper
proposes a time period encoding method based on semantic segmentation maps and infrared
radiation time-varying curves.

The variation in radiation for different materials is closely related to temperature changes.
We can construct a database of diurnal infrared radiation variations for different materials
as prior knowledge for infrared image time period extension. To statistically analyze the
time-varying curves of infrared radiation for different materials, this paper uses the SE-
WORKBENCH simulation software to collect infrared radiation data for several materials.
SE-WORKBENCH is a widely used infrared simulation software. By segmenting scene
materials and using pre-calculated atmospheric parameters, it can simulate infrared images
of any scene in different spectral bands and time periods.
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In the dataset used in this paper, the scenes are similar and mainly include roads, trees,
grass, vehicles, and a small number of pedestrians. Using SE-WORKBENCH, we collected
time-varying infrared radiation data for the four frequently appearing scenes of sky, grass,
ground, and trees in the dataset, as shown in Table 3. According to the table, the variation
in sky radiation remains relatively stable throughout the day; the radiation trends and
amplitudes for grass and trees are almost identical because vegetation has a low specific heat
capacity, resulting in smaller temperature and infrared radiation variations; the ground has
a higher specific heat capacity, leading to relatively larger infrared radiation variations.

Table 3: Statistics of Radiation Variation for Different Materials Over Time (Unit:
W/(m2⋅sr))

Time Sky Tree Grass Ground

05:00 1.48125 1.53412 1.52892 1.57349
14:00 1.55423 2.39011 2.53156 3.28729
19:00 1.46777 1.57837 1.59181 1.63271

For material segmentation in infrared images, the semantic segmentation results from
Section 4.2.1 are used as the corresponding material segmentation results. This equivalence
holds because this paper only maps materials to infrared radiation for the four scenarios
of sky, grass, ground, and trees. Within these scenarios, the materials are uniform, with
no ambiguous information. Based on the constructed database of diurnal infrared radiation
variations for different materials and semantic segmentation results, this paper proposes a
time period encoding method based on semantic segmentation maps and infrared texture
time-varying curves. The implementation is as follows:

1. First, normalize the collected mid-wave infrared radiation variations. The normalized
results are shown in Table 4.

2. Based on the semantic segmentation map from the original infrared image, combine
the semantic encoding information of the scene with the target time period information
to find the corresponding normalized radiation value in Table 4 and replace the pixel
values on the semantic map.

3. Repeat the above operation for each pixel on the semantic map. For pixels correspond-
ing to semantic encodings other than sky, grass, ground, and trees, set the value to 0
to obtain material-related time period encoding information.
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4. To ensure the feasibility of time period extension for materials other than sky, grass,
ground, and trees, merge the material-related time period encoding information with
the time period encoding information proposed in Section 4.1.1 at the channel level to
serve as the time period encoding for the semantic-constrained StarGAN.

Table 4: Mapping Table for Time Period Encoding Information of Different Materials

Time Sky Tree Grass Ground

05:00 0.007 0.036 0.034 0.058
14:00 0.047 0.507 0.585 1
19:00 0.000 0.061 0.068 0.091

3.2.3 Semantic-Constrained StarGAN Model Construction and Analysis

For the task of infrared image extension, this paper proposes a semantic-constrained Star-
GAN based on the StarGAN network. A semantic encoding branch is added, and the features
from the second-to-last layer of the semantic encoding branch are used as the semantic en-
coding of the infrared image. Additionally, a time period encoding method based on the
time-varying priors of infrared radiation for different materials is proposed. The discrimi-
nator network structure is identical to the one introduced in Section 3.1.2. This subsection
focuses on the generator network structure.

The generator network structure constructed in this paper is shown in Figure 18. The
semantic-constrained StarGAN network includes two main components: an encoder and a
decoder. The encoder consists of three encoding branches: the time period encoding branch,
the semantic encoding branch, and the image feature encoding branch. In the figure, the red
dashed box represents the encoder, and the green dashed box represents the decoder. The
image feature encoding branch is the same as the encoder in the StarGAN network described
in Section 3.1.2. The decoder is a combination of the transmission layer decoder from the
StarGAN network. The semantic encoding branch is based on a U-net structure, and the
time period encoding branch maps the semantic segmentation results to infrared radiation
values.

Except for the semantic encoding branch, the convolutional block structures in the gener-
ator network are identical to those in Section 3.1.2 and will not be analyzed further here. The
semantic encoding module primarily consists of an input convolutional layer, four encoder
submodules, four decoder submodules, and an output convolutional layer. The structures of
the encoder and decoder submodules are shown in Figures 19 and 20, respectively.
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Fig. 18: Semantic-Constrained StarGAN Generator Network Structure

3.2.4 Generator Network Parameters of Semantic-Constrained StarGAN

The parameters of the G network are shown in Table 5. In the table, the convolutional
layer parameters (f, k, s, p) represent the number of filters, filter size, stride, and padding,
respectively. The input and output parameters (b, c, h, w) represent the batch size, number
of channels, height, and width of the feature map, respectively. The parameters for the
image feature encoding branch are the same as those in the StarGAN encoder. The decoder
structure is identical to the transmission layer and decoder in the StarGAN network, but the
parameter settings are different. In Table 5, the RCBs in the decoder module represent the
six submodules in the transmission layer, where each submodule has identical parameters.
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Fig. 19: Network Structure of the Encoder Submodule in the Semantic Encoding Branch

Fig. 20: Network Structure of the Decoder Submodule in the Semantic Encoding Branch

3.2.5 Semantic-Constrained StarGAN Loss Function

Based on the StarGAN loss function introduced in Section 3.1.3, the Semantic-Constrained
StarGAN network adds two loss functions: the semantic segmentation loss function and the
semantic encoding consistency loss function.

Semantic Segmentation Loss Function For training the semantic segmentation branch,
this paper adopts a supervised learning approach with labeled data and uses the cross-entropy
loss function for network training. The calculation is as follows:

Lr
seg = E(x,cs) [−cs log(S(x))] (12)

where cs represents the scene category, and S(x) represents the semantic segmentation
output.

Semantic Encoding Consistency Loss Function To ensure that the semantic infor-
mation in the generated infrared image is consistent with that of the input infrared image,
this paper introduces the semantic encoding consistency loss. The generated infrared image,
after passing through the semantic encoding branch, should output semantic segmentation
results that match the original infrared image’s semantic information, as shown in the fol-
lowing equation:

Lrec_seg = E(x,c,c′) [−cs log(S(G(x, c)))] (13)
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Table 5: Semantic-Constrained StarGAN Generator Network Parameters

Module Convolutional
Block Name

Convolutional
Layer Parame-
ters (f, k, s, p)

Input Features
(b, c, h, w)

Output Features
(b, c, h, w)

Semantic S_CB0 (64, 4, 1, 1) (1, 3, 64, 64) (1, 64, 64, 64)
Encoding S_CB1 (128, 4, 1, 2) (1, 64, 64, 64) (1, 128, 32, 32)
Module S_CB2 (256, 4, 1, 2) (1, 128, 32, 32) (1, 256, 16, 16)

S_CB3 (512, 4, 1, 2) (1, 256, 16, 16) (1, 512, 8, 8)
S_CB4 (1024, 4, 1, 2) (1, 512, 8, 8) (1, 1024, 4, 4)
S_DB0 (512, 4, 1, 2) (1, 1024, 4, 4) (1, 512, 8, 8)
S_DB1 (256, 4, 1, 2) (1, 512*2, 8, 8) (1, 256, 16, 16)
S_DB2 (128, 4, 1, 2) (1,256*2,16,16) (1, 128, 32, 32)
S_DB3 (64, 4, 1, 2) (1,128*2, 32, 32) (1, 64, 64, 64)
S_DB4 (20, 4, 1, 1) (1, 64, 64, 64) (1, 20, 64, 64)

Decoder RCBs (336, 3, 1, 1) (1, 336, 64, 64) (1, 336, 64, 64)
DB0 (128, 4, 1, 2) (1, 336, 64, 64) (1,128, 128, 128)
DB1 (64, 4, 1, 2) (1,128, 128, 128) (1, 64, 256, 256)
DB2 (3, 7, 1, 1) (1, 64, 256, 256) (1, 3, 256, 256)

Generator and Discriminator Optimization Loss Functions The optimization loss
functions for the generator and discriminator are as follows:

LD = −Ladv + λclsL
r
cls (14)

LG = Ladv + λclsL
f
cls + λrecLrec + λsegL

r
seg + λrec_segLrec_seg (15)

where λcls, λrec, λseg, and λrec_seg are hyperparameters that control the relative importance
of the time period classification loss, reconstruction loss, semantic segmentation loss, and
semantic encoding consistency loss relative to the adversarial loss.

The diagram for the loss function of infrared image time period extension based on
Semantic-Constrained StarGAN is shown in Figures 21.

3.2.6 Evaluation Metrics for Infrared Image Time Period Extension

Grayscale Distribution Histogram In this paper, we use the grayscale distribution his-
togram to estimate the grayscale distribution of images. The formula for calculating the
grayscale distribution histogram is as follows:
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Fig. 21: Semantic-Constrained StarGAN Loss Function Diagram

ph =
nh

∑h nh

(16)

where h represents the grayscale value (0-255), ph represents the probability of the
grayscale value h appearing in the image, and nh is the number of pixels with grayscale
value h.

Bhattacharyya Coefficient The Bhattacharyya coefficient is used to measure the con-
sistency of histogram distributions. Its calculation is as follows:

BC(p, q) =
n

∑
i=1

√
piqi (17)

where p and q are the histograms of the real infrared image and the extended infrared
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image, and n is the number of histogram bins.
Structural Similarity Since the dataset used in this paper does not have corresponding

ground truth labels for images, to evaluate the invariance of the image structure and corre-
sponding semantic structure after time period extension, we use SSIM (Structural Similarity
Index) to measure the structural similarity between two infrared images before and after the
time period extension. SSIM evaluates the structural information of two images, and the
higher the value, the greater the structural consistency between the two images.

3.2.7 Model Algorithm and Experimental Results Analysis

Based on the Semantic-Constrained StarGAN network constructed in Section 3.2.3, experi-
ments were conducted using the same dataset as in Section 3.1.4. After 20,000 iterations, the
network converged, and the generator’s cycle consistency loss and the discriminator’s loss
function are shown in Figures 22 and Figures 23, respectively. The generator’s loss function
continuously decreased, and the discriminator’s ability to distinguish between real and fake
samples remained relatively consistent, with no gradient collapse observed. Compared to the
training process of the StarGAN network, the oscillation in the discriminator’s loss function
was significantly reduced.
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Fig. 22: Semantic-Constrained StarGAN Generator Cycle Consistency Loss Curve
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Fig. 23: Semantic-Constrained StarGAN Discriminator Loss Curve

The trained generator network was used for time period extension on the test set. This
section first uses subjective judgment to assess the realism of the generated images and the
effectiveness of the time period information. Figures 24, Figures 25, and Figures 26 show
the time period extension results for 5:00 AM, 2:00 PM, and 7:00 PM, respectively. The
first column shows the input real infrared images (the same scenes used in Section 3.1.4),
and the second, third, and fourth columns show the infrared images generated for 5:00 AM,
2:00 PM, and 7:00 PM, respectively.
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Fig. 24: 5:00 AM Infrared Image Time Period Extension Results

Fig. 25: 2:00 PM Infrared Image Time Period Extension Results
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Fig. 26: 7:00 PM Infrared Image Time Period Extension Results

From Figures 24, Figures 25, and Figures 26, we can observe that the infrared images
generated by the Semantic-Constrained StarGAN network for each time period extension
are realistic, retaining the scene information of the original infrared images while also ef-
fectively extending the image to the corresponding infrared image domain for that time pe-
riod. Compared to the experimental results obtained in Section 3.1.4 using the same scenes,
Semantic-Constrained StarGAN shows a significant improvement in generation performance.

4 Concluasion
In this paper, we address the task of non-matching infrared image time period extension.
We begin by analyzing the rationale for using the StarGAN network in this context, followed
by a review of the experimental results. We then examine the challenges, including incon-
sistent extension outcomes for the same material and inaccuracies in time period extensions
of images after StarGAN processing. To resolve these issues, we propose an infrared image
time period extension method based on the Semantic-Constrained StarGAN network. This
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approach incorporates semantic constraints during network training by integrating scene se-
mantic segmentation information and a semantic encoding consistency loss. Additionally, we
introduce a method for encoding scene time period information using semantic segmentation
maps and infrared texture time-varying curves. Experimental results demonstrate that the
Semantic-Constrained StarGAN network performs more effectively for infrared image time
period extension tasks.
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